Bayesian wavelet networks for nonparametric regression

نویسندگان

  • Christopher C. Holmes
  • Bani K. Mallick
چکیده

Radial wavelet networks have recently been proposed as a method for nonparametric regression. In this paper we analyze their performance within a Bayesian framework. We derive probability distributions over both the dimension of the networks and the network coefficients by placing a prior on the degrees of freedom of the model. This process bypasses the need to test or select a finite number of networks during the modeling process. Predictions are formed by mixing over many models of varying dimension and parameterization.We show that the complexity of the models adapts to the complexity of the data and produces good results on a number of benchmark test series.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric Bayesian Data Analysis

We review the current state of nonparametric Bayesian inference. The discussion follows a list of important statistical inference problems, including density estimation, regression, survival analysis, hierarchical models and model validation. For each inference problem we review relevant nonparametric Bayesian models and approaches including Dirichlet process (DP) models and variations, Polya t...

متن کامل

Fuzzy sets in nonparametric Bayes regression

Abstract: A simple Bayesian approach to nonparametric regression is described using fuzzy sets and membership functions. Membership functions are interpreted as likelihood functions for the unknown regression function, so that with the help of a reference prior they can be transformed to prior density functions. The unknown regression function is decomposed into wavelets and a hierarchical Baye...

متن کامل

Frequentist Optimality of Bayesian Wavelet Shrinkage Rules for Gaussian and Non-gaussian Noise1 by Marianna Pensky

The present paper investigates theoretical performance of various Bayesian wavelet shrinkage rules in a nonparametric regression model with i.i.d. errors which are not necessarily normally distributed. The main purpose is comparison of various Bayesian models in terms of their frequentist asymptotic optimality in Sobolev and Besov spaces. We establish a relationship between hyperparameters, ver...

متن کامل

Using wavelet network in nonparametric estimation

Wavelet networks are a class of neural networks consisting of wavelets. In this paper, algorithms for wavelet network construction are proposed for the purpose of nonparametric regression estimation. Particular attentions are paid to sparse training data so that problems of large dimension can be better handled. A numerical example on nonlinear system identification is presented for illustration.

متن کامل

Wavelets for Nonparametric Stochastic Regression with Pairwise Negative Quadrant Dependent Random Variables

We propose a wavelet based stochastic regression function estimator for the estimation of the regression function for a sequence of pairwise negative quadrant dependent random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator are investigated. It is found that the estimators have similar properties to their counterparts st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 11 1  شماره 

صفحات  -

تاریخ انتشار 2000